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This note summarizes the state of what is known about the tractability of
the problem ModPath, which asks if an input undirected graph contains a
simple st-path whose length satisfies modulo constraints. We also consider
the problem ModCycle, which asks for the existence of a simple cycle subject
to such constraints. We also discuss the status of these problems on directed
graphs, and on restricted classes of graphs. We explain connections to the
problem variant asking for a constant vertex-disjoint number of such paths
or cycles, and discuss links to other related work.

1 Definition

A simple path in an undirected graph G is a path that does not visit the same vertex
twice. (Note that we do not consider trails, which can reuse the same vertex twice but
must not use the same edge twice.)
We study the following problem. It was posed in [MP22], though related questions

have been studied much earlier (e.g., [Tho83, APY91]):

Definition 1.1. Fix integers p and q > 0. Given an undirected graph G and two vertices
s and t, we want to know if there exists a simple path connecting s and t in G whose
length is p mod q. We call this the ModPathp,q problem.

A related problem is:

Definition 1.2. Fix integers p and q > 0. Given an undirected graph G, we want to
know if there is a simple cycle in G whose length is p mod q. We call this the ModCyclep,q
problem.

These problems are clearly in NP, as we can easily check in polynomial time that a
path or cycle is suitable. The question is whether they are in PTIME.
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2 Easy reductions

Between cycles and paths. It is easy to see that the ModCycle problem reduces to the
ModPath problem:

Proposition 2.1. For any integers p and q > 0, the problem ModCyclep,q reduces in
PTIME (with a Turing reduction) to the problem ModPathp−1,q.

Proof. We show how to reduce the problem, for each edge e of the graph, of determining
whether there is a cycle satisfying the length constraint and using the edge e. This
clearly suffices, as we can then simply test each possible choice of an edge e. For the
reduction, we modify the graph G to a graph Ge where the edge e is removed, and where
the source and sink to the ModPath problem are the endpoints of the edge e. Clearly
there is a bijection between cycles in G using the edge e and st-paths in Ge, and this
bijection maps cycles of length p mod q to paths of length p− 1 mod q.

We can show a similar reduction in the other direction, but the modulo is changed:

Proposition 2.2. For any integers p and q > 0, the problem ModPathp,q reduces in
PTIME (with a Karp reduction) to the problem ModCycle2p+1,2q.

Proof. Given the input undirected graph G to ModPathp,q with source and sink s and
t, subdivide each edge twice, and add a single edge connecting s and t. We let G′ be
the result. Given a path of length p mod q connecting s and t in G, we deduce a path
of length 2p mod 2q connecting s and t in G′, hence a cycle of length 2p + 1 mod 2q
in G′ thanks to the extra edge. Conversely, we see that all cycles in G′ have even length
in G except if they use the additional edge between s and t, in which case they give us
a simple path between s and t. If the cycle has length 2p + 1 mod 2q with the extra
edge, then the simple path in question has length 2p mod 2q in G′, hence length p mod q
in G.

We are not aware of a reduction from ModPath to ModCycle which preserves the
modulo.

On remainders. It is also clear that, for theModPath problem, the value of the reminder
does not matter:

Proposition 2.3. For any integers p and p′ and q > 0, the problem ModPathp,q reduces
in PTIME (with a Karp reduction) to the problem ModPathp′,q.

Proof. Simply add a path of the suitable length connecting t to a new vertex t′, and
reduce to ModPathp′,q with source s and target t′.

Our results in Section 5 will imply that the same is not true of ModCycle (assuming
that P is different from NP).
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On moduli. It is also obvious that, for paths, the problem is at least as hard when
taking a multiple of the original modulo.

Proposition 2.4. For any integers p and q > 0 and k > 0, the problem ModPathp,q
reduces in PTIME (with a Turing reduction) to the problem ModPathp,kq.

Proof. There is a path connecting s and t with length p mod q iff there is a path of length
p+k′q mod kq for some k, so we can conclude using the oracle and using Proposition 2.3.

A similar reduction works from ModCyclep,q if we assume an oracle for the problems
ModCyclep′,kq with p′ = p+ iq for every i.

3 On directed graphs

In this section, we discuss the status of the problems ModPath and ModCycle when
studying them on directed graphs instead of undirected graphs. We exclude the trivial
case of the modulo q = 1 as the problems then amount to reachability or to testing the
existence of a directed cycle which are clearly solvable in polynomial time.

Paths. The analogue of the ModPath problem on directed graphs is NP-hard. Indeed,
the following is known (with an elementary but non-trivial proof):

Proposition 3.1 ([FHW80]). The problem, given a directed graph G and vertices s, t, s′, t′,
of deciding if there is a path from s to t and a path from s′ to t′ that are vertex-disjoint,
is NP-hard.

Proposition 3.1 implies that ModPath is hard on directed graphs:

Proposition 3.2. Fix any p and q ≥ 2. The problem, given a directed graph G and
vertices s and t, of testing if there is a simple path of length p mod q from s to t, is
NP-hard.

Proof. We reduce from Proposition 3.1. We first assume p > 0. Then, given a directed
graph G with vertices s, t, s′, t′, we replace each edge by a path of q edges, choose s as
the source and t′ as the sink, and add a path of p edges from t to s′. Then it is clear
that any path of length p mod q from s to t must use the path of p edges, and thus
give a solution to the problem of Proposition 3.1. Conversely, any solution to the latter
problem gives a path for the former problem.
If p = 0, we subdivide G as indicated, we choose as source a fresh vertex with a 1-edge

path to s, choose t′ as sink, and add a path of q − 1 edges from t to s′. The reasoning
is similar.
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Cycles. Intractability also holds for the problem ModCycle on directed graphs in the
case where p ̸= 0 and q is large enough, as was already observed in [APY91]:

Proposition 3.3. Fix any 0 < p < q and q ≥ 3. The problem, given a directed graph
G, of testing if there is a simple cycle of length p mod q, is NP-hard.

Proof. We first show that there are two values 0 < p1, p2 < q such that p ̸= p1, p ̸= p2,
and p = p1 + p2 mod q. If p ≥ 2 then this is clear, taking p1 = 1 and p2 = p1 − 1. If
p = 1, take p1 = 2 and p2 = q − 1, noting that p1 < q and p2 ̸= q because q ≥ 3.

We reduce from Proposition 3.1 like in the first case of Proposition 3.2: given the
directed graph G, we subdivide each edge to a path of length q, then add a directed
path of length p1 from t to s′ and a directed path of length p2 from t′ to s. Now, from a
solution to the problem of Proposition 3.1, we deduce a cycle of length p1+p2 = p mod q.
Conversely, in G, we can partition the cycles among those that use either none of the
extra paths, one of the extra paths, or both extra paths. Their modulo values are 0, p1
or p2, and p respectively. Now, as p1 ̸= p and p2 ̸= p and p ̸= 0, this means that a cycle
of length p mod q must use both extra paths. This gives us two disjoint paths from s
to t and from s′ to t′ in G, hence in the initial graph.

A more general complexity classification is given in [HST04] for a variant of the prob-
lem where the remainder modulo the value q is required to fall in a certain set S of
allowed remainders (instead of S = {p}), provided that the set S of allowed remainders
does not include 0.
For the case where the requested remainder is p = 0, i.e., the problem ModCycle0,q

with q ≥ 3 on directed graphs, the complexity appears to be open: this is stated as open
in [HST04]. In other words, for any fixed q ≥ 3, it is open whether we can determine
in PTIME, given a directed graph, whether it contains a simple cycle of length multiple
of q. Also note that this same problem with p = 0 is known to tractable on undirected
graphs (Section 5).
For the case q = 2, it is known that we can (easily) test in PTIME whether a di-

rected graph contains an odd cycle [Tho85], and (less easily) whether it contains an even
cycle [RST99, McC04]. Accordingly:

Proposition 3.4 ([Tho85, RST99, McC04]). For p ∈ {0, 1}, the problem, given a di-
rected graph G, of testing if there is a simple cycle of length p mod 2, is in PTIME.

Note that this contrasts with the intractability of the same task for ModPath with
q = 2 (Proposition 3.2).
Incidentally, only very recently was a tractable randomized algorithm shown to com-

pute the shortest simple even cycle in a directed graph [BHK22]. The problem of the
shortest simple odd cycle in a directed graph can easily be seen to be in polynomial
time, thanks to the fact that the shortest odd cycle is necessarily simple [ch].

Restricted classes of directed graphs. One immediate observation is that all problems
on directed graphs discussed in this section are tractable if the input is assumed to be
a directed acyclic graphs: such graphs have no cycles, and the directed paths on such
graphs are automatically simple.
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4 Testing if all moduli are the same, and the case of modulo 2

Paths. It is shown in [APY91, Theorem 4] that, for any fixed p and q, one can test in
PTIME, given a graph and vertices s and t, whether all simple paths connecting s and
t in G have length p mod q. This implies in particular the following:

Proposition 4.1. The problems ModPath0,2 and ModPath1,2 are in PTIME.

The same result can be shown with a simpler proof due to Edmonds, see [LP84, Section
II] for the case p = 0 and q = 2, which implies the case of p = 1 via Proposition 2.3.

Cycles. The same tractability result holds for the ModCycle problem. In fact, tractabil-
ity even holds on directed graphs as we have seen (Proposition 3.4); but it can be shown
to hold with an easy proof in the case of undirected graphs:

Proposition 4.2 (mentioned in [Tho85]). The problems ModCycle0,2 and ModCycle1,2
are in PTIME.

Proof. For undirected graphs and modulo two, an undirected graph has an odd cycle
unless it is bipartite (which can be checked in PTIME), and it has an even cycle unless
every biconnected component is an odd cycle or a single edge (which can be checked in
PTIME).

5 Cycles when the remainder is zero

For the problem ModCycle, when the requested remainder is 0, then the problem is
known to be tractable:

Proposition 5.1 ([Tho88]). For any q > 0, the problem ModCycle0,q is in PTIME.

This is because any large-treewidth graph must contain such a cycle. Specifically,
[Tho88, Proposition 3.2] shows that any high-treewidth graph contains as topological
minor a wall graph where all edges are 0 mod q. Thus, the answer is yes on high-
treewidth graphs, and on low-treewidth graphs the problems are always tractable (see
Section 6).

6 Bounded-treewidth graphs

Under the assumption that the graphs have bounded treewidth, then the problem
ModPath (hence, ModCycle by Proposition 2.1) is always in PTIME:

Proposition 6.1 (Theorem 5.2, [Tho88]). Let p and q and k be arbitrary integers. The
problem ModPathp,q is in PTIME if we assume that the input graphs have treewidth at
most k.
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Proof. One intuition is that we can process the graph along a tree decomposition and
solve the problem by dynamic programming. Intuitively, we can remember, for each
bag, for each set of disjoint pairs of endpoints and modulo lengths, which such sets
are achievable simultaneously by disjoint paths in the subgraph induced by the nodes
occurring below that bag in the tree decomposition.

7 Constraints on degree and connectivity

In this section, we review some combinatorial results which study which conditions on
the graph can guarantee the existence of cycles whose lengths achieve some prescribed
remainder values. The conditions studied are minimal degree, average degree (or, equiv-
alently, edge density), and connectivity.

Minimal degree. There are results showing that, when graphs are asserted to have suf-
ficiently high minimal degree, then it is impossible to avoid some cycle lengths. Specif-
ically, for graphs of sufficiently large (O(q)) minimal degree, then there must by cycles
of all even lengths modulo q, and if the graph is 2-connected and not bipartite then
there must be cycles of all lengths modulo q [GHLM22]. We note that the main result
of [GHLM22] is actually a result about path lengths on graphs with sufficiently high
minimal degree, so this also gives results on the ModPath problem in this setting.

Average degree. There are also existence results based on edge density [Bol77] (or
equivalently on average degree). Specifically, for any odd modulo q, considering graphs
with a sufficiently high number of edges (i.e., at least cqn some constant q, where n
is the number of vertices), then such graphs must contain a cycle of length p mod q
for every p. (Of course the same cannot be true for even q, e.g., considering bipartite
graphs.) A similar result holds for all even remainders, i.e., cycles of length 2p modulo
q for arbitrary q [Ver00].

Connectivity. There are also existence results based on connectivity. It is known that,
for all q ≥ 3, every q-connected graph contains a cycle of length zero modulo q [GHLM22];
note that the same is true assuming that the treewidth is sufficiently high (Section 5).
Every q-connected graph must also contain cycles of all even lengths modulo q provided
that q ≥ 6 [GHLM22, Theorem 5.16]. Other results are known about the existence of k-
linkage with modulo conditions assuming sufficiently high connectivity [CMZ09]. Last,
it is shown in [LM21] that for odd moduli q, any sufficiently large 3-connected cubic
graph contains cycles with each possible length modulo q.

Directed graphs. Some combinatorial results are also known for directed graphs. It
is known that strongly connected directed graphs of sufficiently high edge density must
contain an even cycle [CGK94]. Lower bounds on degree also imply the existence of
cycles with remainder 0 in the case of directed graphs [AL89], and there are similar
bounds on the dichromatic number [Ste22].
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8 Multiple paths or multiple cycles

One natural generalization of ModPath and ModCycle is to ask for the existence of k
disjoint paths or k disjoint cycles satisfying the conditions. These problems have been
studied when k is given as input: in this case the problem is NP-hard for paths (as
a special case of discrete multicommodity flow [Kar75]) and for cycles (already if we
want to partition a graph on 3n vertices into n vertex-disjoint triangles; see [KH78] or
[vRvKNB13]). They have also been studied when parameterizing by k, e.g., [BJK13].
Here we assume that k is a constant.

Without modulo constraints. The results of Robertson on Seymour imply that, on
undirected graphs, for any constant k, given source-sink pairs (s1, t1), . . . , (sk, tk), we can
decide in PTIME whether there exist k pairwise disjoint paths each of which connects si
and ti [RS95]. (Note that there are recent extensions of such results to problems where
we want to minimize the total length of such paths, in the case k = 2 [BH19].) It is
also known that we can test in linear time whether an input undirected graph contains
k vertex-disjoint cycles [Bod94], note that this easily follows from a treewidth-based
argument.
Now, on directed graphs, the existence of k vertex-disjoint cycles can also be tested in

PTIME even on directed graphs [RRST96, Section 5]. By contrast, asking for the exis-
tence of two disjoint paths for two source-target pairs is NP-hard (see Proposition 3.1).
Note that this last result no longer holds if the graph is required to be planar : in this case,
the disjoint path problems for any constant k can be solved in polynomial time [Sch94].

Also note that these results have been extended in the setting where we are looking
for k-tuples of paths that must be shortest paths from si to ti. This task is known to
be tractable on undirected graphs [Loc21], and on directed planar graphs or on directed
graphs with k = 2 [BK17].

With modulo constraints. The results on k disjoint paths and cycles on undirected
graphs have been extended to test the existence of some constant number of disjoint
cycles or paths of prescribed modulo values. It is known that on undirected graphs you
can test in PTIME for the presence of a constant number of disjoint cycles of length
divisible by some q [Tho88, Theorem 5.1]; note that this follows from the proof of
Proposition 5.1, as the answer is always yes on graphs of sufficiently high treewidth. It
was shown in [KR10] that you can test in PTIME for the existence of k vertex-disjoint
odd cycles in undirected graphs. You can also test in PTIME for the existence of k
vertex-disjoint paths connecting k source-sink pairs with prescribed parities [KRW11].

Very recently [KKKX23], a tractability result for cycles with parity constraints was
shown on directed graphs: you can test in PTIME on an input directed graph whether
it contains k vertex-disjoint odd cycles.
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9 Other related work

Group-labeled graphs. Another model is that of group-labeled graphs, for which there
is a directed and undirected setting. The setting of directed group-labeled graphs [KKY20],
considers directed graphs where edges are labeled by an element of an abelian group:
the value of a directed path is the composition of the labels of the edges traversed by
the path. However, edges can then also be traversed in a reverse direction, in which case
we compose by the inverse of their label.

Hence, except in cases like q = 2, the model of directed group-labeled graphs does not
seem well-adapted to code the ModPath or ModCycle problems. Note that the undirected
and directed settings are equivalent where all nonzero elements of the group have order
two [TY23].
The setting of undirected group-labeled graphs [Wol10, Wol11] is closer to our problem.

In this setting, the model considers undirected graphs with each edge again labeled by
an element of an abelian group, and with the value of a path being the combination of
the edge labels.
In the setting of undirected group-labeled graphs, it was recently shown [TY23] that,

for any prime power q, the cycles of length p mod q satisfy the Erdős-Pósa property
for all p. There are other similar results in this model on the Erdős-Pósa property for
paths with prescribed endpoints and modulo values. There are other earlier results on
cycles [GHK+21, GHK+22]. However, this does not seem to imply any result on the
complexity of detecting whether such cycles or paths are present in an input graph.

Robertson-Seymour with parity conditions. There is work aiming at generalizing
Robertson-Seymour results with parity conditions [KRW11, Kaw13]. However, these
do not seem to have been extended to moduli greater than 2, and our problems are
known to be tractable for q = 2 (Section 4).

Graphs with large clique minors. It is known that graphs with large clique minors
must contain certain subgraphs with edges interpreted as multiples of some value [AK21,
DDS21].

Expanding graphs. It is known that expanders, aka expanding graphs, must contain
cycles of all moduli [MS23].

Planar graphs. It is known that on cubic, 3-connected, planar graphs, between any
two vertices of an undirected graph there must be paths of all remainders modulo q = 3,
and such paths can be found in polynomial time [DP91].
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